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Bi-Hamiltonian chains

e Let (M, II) be a Poisson manifold with IT of constant rank (almost
everywhere), with Poisson algebra given by the bracket

{F1, R} = T1(dFy, dFy) = (dFy, TT1dF,).

@ Remark. In local Darboux coordinates (g1, ..., Gn, P1, -+ Pns €1y -, €m)
IT takes the form

0 I 0
II={( -/ 0 O
0 00

where coordinates ¢; are Casimir functions.

Definition

A linear combination ITy = 713 — AIlp (A € R) of two Poisson tensors
Iy, I'ly is called a Poisson pencil if I, is Poisson for any value of A. Then
Iy and IT; are called compatible.
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Bi-Hamiltonian chains

@ Given a Il we can often construct a sequence of vector fields X; that
have two Hamiltonian representations (bi-Hamiltonian chains)

Xi = IT1dH; = TlodH, 1,

where H; € C®(M) are called Hamiltonians of a chain.

o Consider a bi-Poisson manifold (M, Iy, I1y) of dim M = 2n+ m,
where Iy, Il is a pair of compatible Poisson tensors of rank 2n. We
further assume that IT) admits m Casimir functions which are
polynomial in A

ng K i
HRA) = Y H A k=1, m
i=0

(k)

so, that n; + ...+ nyp = nand H;"’ are functionally independent.
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Bi-Hamiltonian chains

@ The collection of n bi-Hamiltonian vector fields

odHY) = 0
MeadH¥ = x* = 11aH
I dH (1) = 0 = : (3.1)
MedH = x{¥ = maH,
0 = HldH,gf)

where k = 1, ..., m, define bi-Hamiltonian systems of
Gel'fand-Zakharevich type. Notice that each chain starts from a
Casimir of I'ly and terminates with a Casimir of I1;.

All HI-(k) pairwise commute wit respect to Iy and I1;.
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Bi-Hamiltonian chains

GZ bi-Hamiltonian chain <= Liouville integrable system J

@ Having GZ bi-Hamiltonian system the crucial toward construction of
separation coordinates is the projection of second Poisson tensor 11y
onto the symplectic foliation of the first Poisson tensor I1j.
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Poisson projections onto submanifolds

@ Consider manifold M of dim M = m and foliation S consisting of
leaves S, parametrized by v € R", so r is codimension of every leave.

@ Let Z be a distribution transversal to S, i.e.
T M=T,5 & Z,

where S, is a leave that passes through x.

@ It defines a decomposition
T™M > X = X + X1, (XH)XE TSy, (X)), € 2«
@ and induces splitting of dual space
TM=T;S, & Z;,
where T;S, annihilates Z, and Z} annihilates TS, .
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Poisson projections onto submanifolds

@ Thus, any one-form & on M has a unique decomposition
T*/\/IBDCZLK”—FIXL, (DéH)XG T;SV, (DCL)XEZ;.

A function F € C(M) is called Z-invariant if LzF = Z(F) = 0 for any
Z € Z. Obviously dF € T*S.

Definition

The Poisson tensor I1 is said to be Z-invariant if

Lz{F,G}1=0

for any pair of Z-invariant functions F, G and any Z € Z.
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Poisson projections onto submanifolds

@ For any Poisson tensor IT on M define the following bivector I1p
HD(IX, ,3) = H(‘XH':BH)' i, ﬁ cT*M (32)

I1p - deformation of I1.

The image of Ilp is tangent to the foliation S. \

@ Indeed,

<1X,HD‘B> = <06||,H‘BH> =0 for ‘B €Z¥ = Z* C kerI1p.

@ So, IIp can be naturally restricted to any leave S, : 7w =Ilpjs.

If 11 is Z-invariant, then Ilp is Poisson and so 7t. \
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Poisson projections onto submanifolds

From Z-invariant of IT: Lz(dF,I1dG|) =0, so

d (dF|,11dG|) € T*S => (d (dF|,11dG))), = d (dF|,I1dG)),

[
hence, the Jacobi identity

{{F, G}HD +C.p. = <(d <dFHdeGH>) ,HdH||> +C.p. = <d <dF||,HdGH>,I_

I
is fulfilled. O

v

@ Observation. Annihilator Z* of TS is defined as soon as S is
determined.

Definition

Distribution D = I'T1(Z*), associated with the foliation S, is called Dirac
distribution.
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Poisson projections onto submanifolds

@ Two limited cases are possible:

@ TM=D®TS Dirac case
©@ DC TS tangent case.

o Let S be parametrized by ¢;(x) € C(M) :
Ss={xeM:pi(x)=v;, i=1,..r},

so {dg;} — basis in Z*.
e Denote by {Z;} a basis dual to {d¢;}, so Zj(¢;) = Jj;. Then,

XH =X - ;X(q),’)Z;, DCH = — ;K(Zi)dgﬂ,’.
o Obviously Xj/(¢;) =0 and a(Z;) = 0.
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Poisson projections onto submanifolds

o Then, from Ilp(a, B) = T1(a, B) we get

r 1 r

HD:H_[-:ZIXI/\Zi—i_EI-jZ:quUZi/\Zj (33)
where X,' = qu),’, q)u = {(p,', QOJ}H.

@ In the Dirac case we have a canonical choice of Z = D, as all X; are

transversal to S and are linearly independent (det(¢;j) # 0).
Moreover IT is naturally Z-invariant since Lx,IT = 0.

@ ¢;(x) are then "second class constraints” in Dirac terminology.
@ The basis {Z;} dual to {d¢;} can be expressed by X;:

VARS Z((P_l)j,'xj' Zj((Pf):‘Sij'
j=1
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Poisson projections onto submanifolds

e Ilp (3.3) attains the form

1 r
Hp=11-3 ). (971); Xi A X
ij=1

@ This Poisson tensor defines the following bracket on C(M) :

{F. Gy, ={F. G~ ) {F.9i}u (¢77);{9j G}
ij=1
known as a Dirac bracket.
@ In tangent case all X; are tangent to S, i.e.
Xi(9;j) =11(dg;, dg;) = 0, so
Ip=T1-) XA Z
i=1
and Z; must be find separately from case to case.
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From bi-Hamiltonian to quasi-bi-Hamiltonian chains

@ Our foliation is symplectic foliation of Iy, so
Z* = Ker Iy = Sp{dc;}.

@ For GZ-bi-Hamiltonian chains Hl(dc,-, dcj) = 0, so we are in tangent
case when project I onto S.

@ Assume we found Z transversal to S and such that Iy is Z -
invariant. Then Ilp is Poisson with Ker 11y C Ker I1p, so both
tensors can be restricted to S.

o Let

7'[0:H0|5, 7T1 :HD|S-
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From bi-Hamiltonian to quasi-bi-Hamiltonian chains

Theorem

Bi-Hamiltonian chains (3.1) restricted to S take the form of
quasi-bi-Hamiltonian chains

mydh) = 7 ( Zoc(k dht) ) (3.4)

where

) = (5 . WO = (s

o It follows from the fact that ITy = I1p + Y/ Xl(k) A Zg.
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From bi-Hamiltonian to quasi-bi-Hamiltonian chains

{HY H Y, = 0.

v
Theorem

Necessary and sufficient condition for compatibility of 1y and I1p (hence
7o and 711) is

LzTTo = 0.

e Z; are symmetries of Iy (so Ilp is Z - invariant), hence Z is
integrable distribution and [Z;, Zj] = 0.
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N-manifolds

Definition

wN— manofold is a bi-Poisson manifold (7tg, 7t1) with two compatible
Poisson tensors, where at least one (say 7o) is nondegenerated.

@ So M is endowed with a symplectic form w = wo = 77! and the
(1,1)— tensor field N = 7rywo.

@ From compatibility of 71p and 7t; follows that Nijenhuis torsion of N
vanishes

T(N)(X,Y)=[NX,NY] = N[NX,y] — N[ X, NY] + N2[X, Y]=0
i}
LyxN = NLxN
and hence, the second two-form
w1 = Wo7li1Wo

is closed.
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N-manifolds

@ We further restrict to generic case, when N has at every point n
distinct eigenvalues which are functionally independent.

It means that 717 is also nondegenerated and w; is symplectic.
Notice that

1 = N7‘L’0, w1 = N*CUO, N* = w7ty .

Moreover,

{f,g}n,. = w,-(Xf,Xg), Xh = 7'(0dh, I = 1, 2.

Let us come back to our quasi-bi-Hamiltonian chain (3.4). The

distribution tangent to the foliation defined by (hgl), h,(f:)) is
bi-Lagrangian:
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N-manifolds

@ Moreover, quasi-bi-Hamiltonian equations can be put into one matrix
equation

m
N*dh; = Y Fydh; <= N*dh = Fdh
j=1

where (hy, ..., h,) = (h&l), hﬁ,’:)) and F— control matrix (recursion

matrix).
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