LECTURE III Bi-Hamiltonian chains and it projections

Maciej Błaszak

Poznań University, Poland

Maciej Błaszak (Poznań University, Poland) and [LECTURE III](#page-17-0) 1 1 1 / 18

4 0 8

э

Bi-Hamiltonian chains

• Let (M, Π) be a Poisson manifold with Π of constant rank (almost everywhere), with Poisson algebra given by the bracket

$$
\{F_1,F_2\}_{\Pi}=\Pi(dF_1,dF_2)=\langle dF_1,\Pi dF_2\rangle.
$$

• Remark. In local Darboux coordinates $(q_1, ..., q_n, p_1, ..., p_n, c_1, ..., c_m)$ Π takes the form

$$
\Pi = \left(\begin{array}{rrr} 0 & I & 0 \\ -I & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)
$$

where coordinates c_i are Casimir functions.

Definition

A linear combination $\Pi_{\lambda} = \pi_1 - \lambda \Pi_0$ ($\lambda \in \mathbb{R}$) of two Poisson tensors Π_0 , Π_1 is called a Poisson pencil if Π_λ is Poisson for any value of λ . Then Π_0 and Π_1 are called compatible.

Bi-Hamiltonian chains

 \bullet Given a Π_{λ} we can often construct a sequence of vector fields X_i that have two Hamiltonian representations (bi-Hamiltonian chains)

$$
X_i = \Pi_1 dH_i = \Pi_0 dH_{i+1},
$$

where $H_i\in\mathcal{C}^\infty(M)$ are called Hamiltonians of a chain.

• Consider a bi-Poisson manifold (M, Π_0, Π_1) of dim $M = 2n + m$, where Π_0 , Π_1 is a pair of compatible Poisson tensors of rank 2n. We further assume that Π_{λ} admits m Casimir functions which are polynomial in *λ*

$$
H^{(k)}(\lambda) = \sum_{i=0}^{n_k} H_i^{(k)} \lambda^{n_k - i}, \qquad k = 1, ..., m
$$

so, that $n_1 + ... + n_m = n$ and $H^{(k)}_i$ $i^{(k)}$ are functionally independent.

Bi-Hamiltonian chains

• The collection of *n* bi-Hamiltonian vector fields

$$
\Pi_0 dH_0^{(k)} = 0
$$
\n
$$
\Pi_0 dH_1^{(k)} = X_1^{(k)} = \Pi_1 dH_0^{(k)}
$$
\n
$$
\Pi_0 dH_{n_k}^{(k)} = X_{n_k}^{(k)} = \Pi_1 dH_{n_k-1}^{(k)}
$$
\n
$$
\Pi_0 dH_{n_k}^{(k)} = X_{n_k}^{(k)} = \Pi_1 dH_{n_k-1}^{(k)}
$$
\n
$$
0 = \Pi_1 dH_{n_k}^{(k)}
$$
\n(3.1)

where $k = 1, ..., m$, define bi-Hamiltonian systems of Gel'fand-Zakharevich type. Notice that each chain starts from a Casimir of Π_0 and terminates with a Casimir of Π_1 .

Lemma

All $H^{(k)}_i$ pairwise commute wit respect to Π_0 and $\Pi_1.$

イロト イ押ト イヨト イヨト

GZ bi-Hamiltonian chain \iff Liouville integrable system

• Having GZ bi-Hamiltonian system the crucial toward construction of separation coordinates is the projection of second Poisson tensor Π_1 onto the symplectic foliation of the first Poisson tensor Π_0 .

- Consider manifold M of dim $M = m$ and foliation S consisting of leaves S_ν parametrized by $\nu\in\mathbb{R}^r$, so r is codimension of every leave.
- Let $\mathcal Z$ be a distribution transversal to S, i.e.

$$
T_xM=T_xS_v\oplus \mathcal{Z}_x
$$

where S_v is a leave that passes through x.

• It defines a decomposition

$$
TM \ni X = X_{\parallel} + X_{\perp}, \qquad (X_{\parallel})_{x} \in T_{x}S_{\nu}, \quad (X_{\perp})_{x} \in \mathcal{Z}_{x}
$$

• and induces splitting of dual space

$$
\mathcal{T}^*_xM=\mathcal{T}^*_xS_\nu\oplus \mathcal{Z}^*_x,
$$

where $T_{\mathsf{x}}^*\mathsf{S}_v$ annihilates \mathcal{Z}_{x} and $\mathcal{Z}_{\mathsf{x}}^*$ annihilates $T_{\mathsf{x}}\mathsf{S}_v$.

Thus, any one-form *α* on M has a unique decomposition

$$
\mathcal{T}^*M \ni \alpha = \alpha_{\parallel} + \alpha_{\perp}, \qquad \left(\alpha_{\parallel}\right)_{\times} \in \mathcal{T}_{\times}^* \mathcal{S}_{\nu}, \quad \left(\alpha_{\perp}\right)_{\times} \in \mathcal{Z}_{\times}^*.
$$

Definition

A function $F \in C(M)$ is called \mathcal{Z} -invariant if $L_z F = Z(F) = 0$ for any $Z \in \mathcal{Z}$. Obviously $dF \in T^*S$.

Definition

The Poisson tensor Π is said to be \mathcal{Z} -invariant if

$$
L_Z\{\digamma,G\}_\Pi=0
$$

for any pair of \mathcal{Z} -invariant functions F, G and any $Z \in \mathcal{Z}$.

• For any Poisson tensor Π on M define the following bivector Π_D

$$
\Pi_D(\alpha, \beta) := \Pi(\alpha_{\parallel}, \beta_{\parallel}), \quad \alpha, \beta \in \mathcal{T}^*M \tag{3.2}
$$

 Π_D - deformation of Π .

Lemma

The image of Π_D is tangent to the foliation S.

• Indeed,

$$
\langle \alpha, \Pi_D \beta \rangle = \langle \alpha_{\parallel}, \Pi \beta_{\parallel} \rangle = 0 \text{ for } \beta \in \mathcal{Z}^* \implies \mathcal{Z}^* \subset \ker \Pi_D.
$$

So, Π_D can be naturally restricted to any leave \mathcal{S}_ν : $\pi = \Pi_{D|S}.$

Theorem

If Π is $\mathcal Z$ -invariant, then Π_D is Poisson and so π .

Proof.

From $\mathcal Z$ -invariant of Π : $\;$ $L_Z\langle dF_\parallel, \Pi dG_\parallel \rangle = 0$, so

$$
d \langle dF_{\parallel}, \Pi dG_{\parallel} \rangle \in T^*S \Longrightarrow \big(d \langle dF_{\parallel}, \Pi dG_{\parallel} \rangle \big)_{\parallel} = d \langle dF_{\parallel}, \Pi dG_{\parallel} \rangle,
$$

hence, the Jacobi identity

$$
\{\{F,G\}_{\Pi_D}+c.p.=\langle\left(d\langle dF_{\parallel},\Pi dG_{\parallel}\rangle\right)_{\parallel},\Pi dH_{\parallel}\rangle+c.p.=\langle d\langle dF_{\parallel},\Pi dG_{\parallel}\rangle,\Pi
$$

is fulfilled.

■ Observation. Annihilator \mathcal{Z}^* of TS is defined as soon as S is determined.

Definition

Distribution $D = \Pi(\mathcal{Z}^*)$, associated with the foliation S, is called Dirac distribution.

• Two limited cases are possible:

 \bullet $TM = D \oplus TS$ Dirac case

2 $D \subset TS$ tangent case.

• Let S be parametrized by $\varphi_i(x) \in C(M)$:

$$
S_v = \{x \in M : \varphi_i(x) = v_i, \quad i = 1, ..., r\},\
$$

so $\{d\varphi_i\}$ – basis in \mathcal{Z}^* .

• Denote by $\{Z_i\}$ a basis dual to $\{d\varphi_i\}$, so $Z_i(\varphi_i) = \delta_{ii}$. Then,

$$
X_{\parallel}=X-\sum_{i=1}^rX(\varphi_i)Z_i, \quad \alpha_{\parallel}=\alpha-\sum_{i=1}^r\alpha(Z_i)d\varphi_i.
$$

Obviously $X_{\parallel}(\varphi_i) = 0$ and $\alpha_{\parallel}(Z_i) = 0$.

Then, from $\Pi_D(\alpha,\beta)=\Pi(\alpha_\parallel,\beta_\parallel)$ we get

$$
\Pi_D = \Pi - \sum_{i=1}^r X_i \wedge Z_i + \frac{1}{2} \sum_{i,j=1}^r \varphi_{ij} Z_i \wedge Z_j \tag{3.3}
$$

where $X_i = \Pi d\varphi_i$, $\varphi_{ij} = {\varphi_i, \varphi_j}_{\Pi}$.

- In the Dirac case we have a canonical choice of $\mathcal{Z} = D$, as all X_i are transversal to S and are linearly independent $(\det(\varphi_{ij}) \neq 0)$. Moreover Π is naturally $\mathcal Z$ -invariant since $L_{X_i} \Pi = 0$.
- ϕ $\varphi_i(x)$ are then "second class constraints" in Dirac terminology.
- The basis $\{Z_i\}$ dual to $\{d\varphi_i\}$ can be expressed by X_i :

$$
Z_i = \sum_{j=1}^r \left(\varphi^{-1}\right)_{ji} X_j, \quad Z_j(\varphi_i) = \delta_{ij}.
$$

 \bullet Π _D [\(3.3\)](#page-10-1) attains the form

$$
\Pi_D = \Pi - \frac{1}{2} \sum_{i,j=1}^r (\varphi^{-1})_{ij} X_j \wedge X_i.
$$

• This Poisson tensor defines the following bracket on $C(M)$:

$$
\{F, G\}_{\Pi_D} = \{F, G\}_{\Pi} - \sum_{i,j=1}^r \{F, \varphi_i\}_{\Pi} (\varphi^{-1})_{ij} \{\varphi_j, G\}_{\Pi}
$$

known as a Dirac bracket.

• In tangent case all X_i are tangent to S, i.e. $X_{i}(\varphi_{j})=\Pi(d\varphi_{i},d\varphi_{j})=0$, so

$$
\Pi_D=\Pi-\sum_{i=1}^r X_i\wedge Z_i
$$

and Z_i must be find separately from case t[o c](#page-10-0)[as](#page-12-0)[e.](#page-10-0)

- \bullet Our foliation is symplectic foliation of Π_0 , so $\mathcal{Z}^* =$ Ker $\Pi_0 =$ Sp{dc_i}.
- For GZ-bi-Hamiltonian chains $\Pi_1(dc_i,dc_j)=0$, so we are in tangent case when project Π_1 onto S.
- Assume we found $\mathcal Z$ transversal to S and such that Π_1 is $\mathcal Z$ invariant. Then Π_D is Poisson with Ker $\Pi_0 \subseteq$ Ker Π_D , so both tensors can be restricted to S.

Let

$$
\pi_0=\Pi_{0|S},\quad \pi_1=\Pi_{D|S}.
$$

Theorem

Bi-Hamiltonian chains [\(3.1\)](#page-3-0) restricted to S take the form of quasi-bi-Hamiltonian chains

$$
\pi_1 dh_i^{(k)} = \pi_0 \left(dh_{i+1}^{(k)} - \sum_{j=1}^m \alpha_{ij}^{(k)} dh_1^{(j)} \right), \qquad (3.4)
$$

where

$$
\alpha_{ij}^{(k)} = \left(Z_j(H_i^{(k)})\right)_{|S}, \quad h_i^{(k)} = (H_i^{(k)})_{|S}.
$$

It follows from the fact that $\Pi_1 = \Pi_D + \sum_{k=1}^m X_1^{(k)} \wedge Z_k.$

Lemma

$$
\{H_i^{(k)}, H_j^{(r)}\}_{\Pi_D}=0.
$$

Theorem

Necessary and sufficient condition for compatibility of Π_0 and Π_D (hence π_0 and π_1) is

$$
L_{Z_i}\Pi_0=0.
$$

• Z_i are symmetries of Π_0 (so Π_0 is Z - invariant), hence Z is integrable distribution and $[Z_i,Z_j]=0.$

N-manifolds

Definition

 $ωN-$ manofold is a bi-Poisson manifold ($π_0, π_1$) with two compatible Poisson tensors, where at least one (say π_0) is nondegenerated.

- So M is endowed with a symplectic form $\omega=\omega_0=\pi^{-1}$ and the (1, 1)− tensor field N = *π*1*ω*0.
- **•** From compatibility of π_0 and π_1 follows that Nijenhuis torsion of N vanishes

$$
T(N)(X, Y) = [NX, NY] - N[NX, y] - N[X, NY] + N^{2}[X, Y] = 0
$$

$$
\updownarrow
$$

$$
L_{NX}N = NL_{X}N
$$

and hence, the second two-form

$$
\omega_1=\omega_0\pi_1\omega_0
$$

is closed.

N-manifolds

- \bullet We further restrict to generic case, when N has at every point n distinct eigenvalues which are functionally independent.
- **It means that** π_1 **is also nondegenerated and** ω_1 **is symplectic.**
- Notice that

$$
\pi_1 = N\pi_0, \quad \omega_1 = N^*\omega_0, \quad N^* = \omega_0\pi_1.
$$

• Moreover.

$$
\{f,g\}_{\pi_i}=\omega_i(X_f,X_g),\quad X_h=\pi_0dh,\quad i=1,2.
$$

Let us come back to our quasi-bi-Hamiltonian chain [\(3.4\)](#page-13-0). The distribution tangent to the foliation defined by $(\mathit{h}_{1}^{(1)}$ $\mathfrak{h}_{1}^{(1)},...,\mathfrak{h}_{n_{m}}^{(m)})$ is bi-Lagrangian:

$$
\omega_0(X_{h_i^{(k)}},X_{h_j^{(r)}})=\omega_1(X_{h_i^{(k)}},X_{h_j^{(r)}})=0.
$$

Moreover, quasi-bi-Hamiltonian equations can be put into one matrix equation

$$
N^*dh_i=\sum_{j=1}^mF_{ij}dh_j\Longleftrightarrow N^*dh=Fdh
$$

where $(h_1,...,h_n)=(h_1^{(1)})$ $\left(1 \atop 1 \right),...,\left(h_{n_m}^{(m)} \right)$ and $F-$ control matrix (recursion matrix).

イロト イ団 ト イヨ ト イヨ トー