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Maciej B laszak (Poznań University, Poland) LECTURE III 1 / 18



Bi-Hamiltonian chains

Let (M, Π) be a Poisson manifold with Π of constant rank (almost
everywhere), with Poisson algebra given by the bracket

{F1, F2}Π = Π(dF1, dF2) = 〈dF1, ΠdF2〉.

Remark. In local Darboux coordinates (q1, ..., qn, p1, ..., pn, c1, ..., cm)
Π takes the form

Π =

 0 I 0
−I 0 0
0 0 0


where coordinates ci are Casimir functions.

Definition

A linear combination Πλ = π1 − λΠ0 (λ ∈ R) of two Poisson tensors
Π0, Π1 is called a Poisson pencil if Πλ is Poisson for any value of λ. Then
Π0 and Π1 are called compatible.
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Bi-Hamiltonian chains

Given a Πλ we can often construct a sequence of vector fields Xi that
have two Hamiltonian representations (bi-Hamiltonian chains)

Xi = Π1dHi = Π0dHi+1,

where Hi ∈ C ∞(M) are called Hamiltonians of a chain.

Consider a bi-Poisson manifold (M, Π0, Π1) of dim M = 2n + m,
where Π0, Π1 is a pair of compatible Poisson tensors of rank 2n. We
further assume that Πλ admits m Casimir functions which are
polynomial in λ

H (k)(λ) =
nk

∑
i=0

H
(k)
i λnk−i , k = 1, ..., m

so, that n1 + ... + nm = n and H
(k)
i are functionally independent.
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Bi-Hamiltonian chains

The collection of n bi-Hamiltonian vector fields

ΠλdH (k)(λ) = 0⇐⇒

Π0dH
(k)
0 = 0

Π0dH
(k)
1 = X

(k)
1 = Π1dH

(k)
0

...

Π0dH
(k)
nk = X

(k)
nk = Π1dH

(k)
nk−1

0 = Π1dH
(k)
nk

(3.1)

where k = 1, ..., m, define bi-Hamiltonian systems of
Gel’fand-Zakharevich type. Notice that each chain starts from a
Casimir of Π0 and terminates with a Casimir of Π1.

Lemma

All H
(k)
i pairwise commute wit respect to Π0 and Π1.
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Bi-Hamiltonian chains

GZ bi-Hamiltonian chain ⇐⇒ Liouville integrable system

Having GZ bi-Hamiltonian system the crucial toward construction of
separation coordinates is the projection of second Poisson tensor Π1

onto the symplectic foliation of the first Poisson tensor Π0.
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Poisson projections onto submanifolds

Consider manifold M of dim M = m and foliation S consisting of
leaves Sν parametrized by ν ∈ Rr , so r is codimension of every leave.

Let Z be a distribution transversal to S , i.e.

TxM = TxSν ⊕Zx

where Sν is a leave that passes through x .

It defines a decomposition

TM 3 X = X‖ + X⊥,
(
X‖
)
x
∈ TxSν, (X⊥)x ∈ Zx

and induces splitting of dual space

T ∗x M = T ∗x Sν ⊕Z∗x ,

where T ∗x Sν annihilates Zx and Z∗x annihilates TxSν.
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Poisson projections onto submanifolds

Thus, any one-form α on M has a unique decomposition

T ∗M 3 α = α‖ + α⊥,
(
α‖
)
x
∈ T ∗x Sν, (α⊥)x ∈ Z

∗
x .

Definition

A function F ∈ C (M) is called Z-invariant if LZF = Z (F ) = 0 for any
Z ∈ Z . Obviously dF ∈ T ∗S .

Definition

The Poisson tensor Π is said to be Z-invariant if

LZ{F , G}Π = 0

for any pair of Z-invariant functions F , G and any Z ∈ Z .

Maciej B laszak (Poznań University, Poland) LECTURE III 7 / 18



Poisson projections onto submanifolds

For any Poisson tensor Π on M define the following bivector ΠD

ΠD(α, β) := Π(α‖, β‖), α, β ∈ T ∗M (3.2)

ΠD - deformation of Π.

Lemma

The image of ΠD is tangent to the foliation S .

Indeed,

〈α, ΠDβ〉 = 〈α‖, Πβ‖〉 = 0 for β ∈ Z∗ =⇒ Z∗ ⊂ ker ΠD .

So, ΠD can be naturally restricted to any leave Sν : π = ΠD|S .

Theorem

If Π is Z-invariant, then ΠD is Poisson and so π.
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Poisson projections onto submanifolds

Proof.

From Z-invariant of Π : LZ 〈dF‖, ΠdG‖〉 = 0, so

d 〈dF‖, ΠdG‖〉 ∈ T ∗S =⇒
(
d 〈dF‖, ΠdG‖〉

)
‖ = d 〈dF‖, ΠdG‖〉,

hence, the Jacobi identity

{{F , G}ΠD
+ c .p. = 〈

(
d 〈dF‖, ΠdG‖〉

)
‖ , ΠdH‖〉+ c.p. = 〈d 〈dF‖, ΠdG‖〉, ΠdH‖〉+ c .p. = 0

is fulfilled.

Observation. Annihilator Z∗ of TS is defined as soon as S is
determined.

Definition

Distribution D = Π(Z∗), associated with the foliation S , is called Dirac
distribution.
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Poisson projections onto submanifolds

Two limited cases are possible:

1 TM = D ⊕ TS Dirac case
2 D ⊂ TS tangent case.

Let S be parametrized by ϕi (x) ∈ C (M) :

Sν = {x ∈ M : ϕi (x) = νi , i = 1, ..., r},

so {d ϕi} − basis in Z∗.
Denote by {Zi} a basis dual to {d ϕi}, so Zi (ϕj ) = δij . Then,

X‖ = X −
r

∑
i=1

X (ϕi )Zi , α‖ = α−
r

∑
i=1

α(Zi )d ϕi .

Obviously X‖(ϕi ) = 0 and α‖(Zi ) = 0.
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Poisson projections onto submanifolds

Then, from ΠD(α, β) = Π(α‖, β‖) we get

ΠD = Π−
r

∑
i=1

Xi ∧ Zi +
1

2

r

∑
i ,j=1

ϕijZi ∧ Zj (3.3)

where Xi = Πd ϕi , ϕij = {ϕi , ϕj}Π.

In the Dirac case we have a canonical choice of Z = D, as all Xi are
transversal to S and are linearly independent (det(ϕij ) 6= 0).
Moreover Π is naturally Z-invariant since LXi

Π = 0.

ϕi (x) are then ”second class constraints” in Dirac terminology.

The basis {Zi} dual to {d ϕi} can be expressed by Xi :

Zi =
r

∑
j=1

(
ϕ−1

)
ji

Xj , Zj (ϕi ) = δij .
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Poisson projections onto submanifolds

ΠD (3.3) attains the form

ΠD = Π− 1

2

r

∑
i ,j=1

(
ϕ−1

)
ij

Xj ∧ Xi .

This Poisson tensor defines the following bracket on C (M) :

{F , G}ΠD
= {F , G}Π −

r

∑
i ,j=1

{F , ϕi}Π
(

ϕ−1
)
ij
{ϕj , G}Π

known as a Dirac bracket.

In tangent case all Xi are tangent to S , i.e.
Xi (ϕj ) = Π(d ϕi , d ϕj ) = 0, so

ΠD = Π−
r

∑
i=1

Xi ∧ Zi

and Zi must be find separately from case to case.
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From bi-Hamiltonian to quasi-bi-Hamiltonian chains

Our foliation is symplectic foliation of Π0, so
Z∗ = Ker Π0 = Sp{dci}.
For GZ -bi-Hamiltonian chains Π1(dci , dcj ) = 0, so we are in tangent
case when project Π1 onto S .

Assume we found Z transversal to S and such that Π1 is Z -
invariant. Then ΠD is Poisson with Ker Π0 ⊆ Ker ΠD , so both
tensors can be restricted to S .

Let
π0 = Π0|S , π1 = ΠD|S .
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From bi-Hamiltonian to quasi-bi-Hamiltonian chains

Theorem

Bi-Hamiltonian chains (3.1) restricted to S take the form of
quasi-bi-Hamiltonian chains

π1dh
(k)
i = π0

(
dh

(k)
i+1 −

m

∑
j=1

α
(k)
ij dh

(j)
1

)
, (3.4)

where
α
(k)
ij =

(
Zj (H

(k)
i )

)
|S

, h
(k)
i = (H

(k)
i )|S .

It follows from the fact that Π1 = ΠD + ∑m
k=1 X

(k)
1 ∧ Zk .
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From bi-Hamiltonian to quasi-bi-Hamiltonian chains

Lemma

{H (k)
i , H

(r )
j }ΠD

= 0.

Theorem

Necessary and sufficient condition for compatibility of Π0 and ΠD (hence
π0 and π1) is

LZi
Π0 = 0.

Zi are symmetries of Π0 (so Π0 is Z - invariant), hence Z is
integrable distribution and [Zi , Zj ] = 0.
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N-manifolds

Definition

ωN− manofold is a bi-Poisson manifold (π0, π1) with two compatible
Poisson tensors, where at least one (say π0) is nondegenerated.

So M is endowed with a symplectic form ω = ω0 = π−1 and the
(1, 1)− tensor field N = π1ω0.

From compatibility of π0 and π1 follows that Nijenhuis torsion of N
vanishes

T (N)(X , Y ) = [NX , NY ]−N [NX , y ]−N [X , NY ] + N2[X , Y ] = 0

m
LNXN = NLXN

and hence, the second two-form

ω1 = ω0π1ω0

is closed.
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N-manifolds

We further restrict to generic case, when N has at every point n
distinct eigenvalues which are functionally independent.

It means that π1 is also nondegenerated and ω1 is symplectic.

Notice that

π1 = Nπ0, ω1 = N∗ω0, N∗ = ω0π1.

Moreover,

{f , g}πi = ωi (Xf , Xg ), Xh = π0dh, i = 1, 2.

Let us come back to our quasi-bi-Hamiltonian chain (3.4). The

distribution tangent to the foliation defined by (h
(1)
1 , ..., h

(m)
nm ) is

bi-Lagrangian:

ω0(Xh
(k)
i

, X
h
(r )
j

) = ω1(Xh
(k)
i

, X
h
(r )
j

) = 0.
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N-manifolds

Moreover, quasi-bi-Hamiltonian equations can be put into one matrix
equation

N∗dhi =
m

∑
j=1

Fijdhj ⇐⇒ N∗dh = Fdh

where (h1, ..., hn) = (h
(1)
1 , ..., h

(m)
nm ) and F− control matrix (recursion

matrix).
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